SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Awad FA, Graham DJ, Singh R, AitBihiOuali L. Safety Sci. 2023; 167: e106282.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.ssci.2023.106282

PMID

unavailable

Abstract

This paper studies the operational safety of urban rail transit (URT) systems through Artificial Neural Networks. While recent safety literature adopting systematic models of analysis consider the complexity of URT operations, they focus on single systems or single components of the operational process. Our study contributes to the URT safety literature by having a macro perspective, while considering that such complex socio-technical systems involve multiple non-linear interactions among their components. To our knowledge, we present the first cross-country analysis of URT safety through machine learning models in the literature, using a unique international dataset from 31 URT systems which comprises annual system-level data. Two models are estimated to predict the annual URT injuries. The first model includes safety-related incidents as inputs, while the second includes operational characteristics of the system. Additionally, a closed-form formula is presented to predict the annual number of injuries based on operational features of the URT system along with an illustrative example to demonstrate benchmarking applications. The results are promising and indicate good generalizability. The models proposed in this study could be useful for operators and policy makers as they aid in prioritizing improvements, predicting future safety performance based on changes in operational features, and as a benchmarking tool.


Language: en

Keywords

Artificial neural networks; Rail injuries; Safety benchmarking; Safety performance; Urban rail safety

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print