SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Bhattarai N, Zhang Y, Liu H, Xu H. Accid. Anal. Prev. 2023; 193: e107306.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.aap.2023.107306

PMID

37769480

Abstract

Crash prediction models (CPMs) are mostly developed using statistical or data-driven methods that rely on observed crashes. However, the historical crash records can be unreliable due to availability and data quality issues. Near-crashes based CPMs offer a proactive approach to predict crash frequencies prior to the occurrence of crashes. Surrogate safety measures can be used to identify near-crashes from road user trajectories. Roadside LiDAR offers an innovative approach to collect vehicle trajectory data at a microscopic resolution with high accuracy providing detailed information of all road user movements. This study presents a methodology to identify near-crashes from Roadside LiDAR based vehicle trajectory data using the surrogate indicators: TTC (Time to Collision), PET (Post Encroachment Time), ACT (Anticipated Collision Time) and MaxD (Maximum Deceleration). Additionally, time-based, and evasive-action-based surrogate measures are combined as different pairs to obtain crash probabilities using extreme value theory (EVT). The study results show that the bivariate EVT model displays a better fit to conflict extremes, predicting crash frequencies better than the univariate model. Likewise, while the bivariate model with ACT and MaxD pair performed the best in terms of accuracy, the TTC and MaxD pair was able to reflect the relative threat levels at the study intersections. Overall, the methodology lays ground for using roadside lidar based trajectory data for proactive safety analysis of signalized intersections.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print