SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ye X, Gao L, Chen J, Lei M. Front. Neurorobotics 2023; 17: e1204418.

Copyright

(Copyright © 2023, Frontiers Research Foundation)

DOI

10.3389/fnbot.2023.1204418

PMID

37719330

PMCID

PMC10501793

Abstract

Semantic segmentation, which is a fundamental task in computer vision. Every pixel will have a specific semantic class assigned to it through semantic segmentation methods. Embedded systems and mobile devices are difficult to deploy high-accuracy segmentation algorithms. Despite the rapid development of semantic segmentation, the balance between speed and accuracy must be improved. As a solution to the above problems, we created a cross-scale fusion attention mechanism network called CFANet, which fuses feature maps from different scales. We first design a novel efficient residual module (ERM), which applies both dilation convolution and factorized convolution. Our CFANet is mainly constructed from ERM. Subsequently, we designed a new multi-branch channel attention mechanism (MCAM) to refine the feature maps at different levels. Experiment results show that CFANet achieved 70.6% mean intersection over union (mIoU) and 67.7% mIoU on Cityscapes and CamVid datasets, respectively, with inference speeds of 118 FPS and 105 FPS on NVIDIA RTX2080Ti GPU cards with 0.84M parameters.


Language: en

Keywords

computer vision; channel attention mechanism; dilation convolution; factorized convolution; residual block; semantic segmentation

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print