SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Madushani JPSS, Sandamal RMK, Meddage DPP, Pasindu HR, Gomes PIA. Transp. Eng. (Amsterdam) 2023; 13: e100190.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.treng.2023.100190

PMID

unavailable

Abstract

The number of expressway road accidents in Sri Lanka has significantly increased (by 20%) due to the expansion of the transport network and high traffic volume. It is crucial to identify the causes of these crashes for effective road safety management. However, traditional statistical methods may be insufficient due to their inherent assumptions. This study utilized explainable machine learning to investigate the factors that affect the severity of traffic crashes on expressways. The study evaluated two groups of traffic crashes: fatal or severe crashes, and other crashes that included non-severe injuries or only property damage. Five factors that contribute to crashes were analyzed: road surface condition, road alignment, location, weather condition, and lighting effect. Four machine learning models (Random Forest (RF), Decision Tree (DT), extreme gradient boosting (XGB), K-Nearest Neighbor (KNN)) were developed and compared with Logistic Regression (LR) using 223 training and 56 testing data instances. The study revealed that the machine learning algorithms provided more accurate predictions than the LR model. To explain the machine learning models, Shapley Additive Explanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) were used. These methods revealed that all five features decreased the possibility of occurrence of fatal accidents. SHAP and LIME explanations confirmed the known interactions between factors influencing crash severity in expressway operational conditions. These explanations increase the trust of end-users and domain experts on machine learning models. Furthermore, the study concluded that using explainable machine learning methods is more effective than traditional regression analysis in evaluating safety performance. Additionally, the results of the study can be utilized to improve road safety by providing accurate explanations for decision-making processes for black-box models.


Language: en

Keywords

Explainable machine learning; Expressways; Logistic regression; Machine learning; Traffic crash severity

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print