SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li S, Wang S, Wang P. Sensors (Basel) 2023; 23(16).

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s23167145

PMID

37631682

PMCID

PMC10459082

Abstract

Traffic sign detection is a crucial task in computer vision, finding wide-ranging applications in intelligent transportation systems, autonomous driving, and traffic safety. However, due to the complexity and variability of traffic environments and the small size of traffic signs, detecting small traffic signs in real-world scenes remains a challenging problem. In order to improve the recognition of road traffic signs, this paper proposes a small object detection algorithm for traffic signs based on the improved YOLOv7. First, the small target detection layer in the neck region was added to augment the detection capability for small traffic sign targets. Simultaneously, the integration of self-attention and convolutional mix modules (ACmix) was applied to the newly added small target detection layer, enabling the capture of additional feature information through the convolutional and self-attention channels within ACmix. Furthermore, the feature extraction capability of the convolution modules was enhanced by replacing the regular convolution modules in the neck layer with omni-dimensional dynamic convolution (ODConv). To further enhance the accuracy of small target detection, the normalized Gaussian Wasserstein distance (NWD) metric was introduced to mitigate the sensitivity to minor positional deviations of small objects. The experimental results on the challenging public dataset TT100K demonstrate that the SANO-YOLOv7 algorithm achieved an 88.7% mAP@0.5, outperforming the baseline model YOLOv7 by 5.3%.


Language: en

Keywords

deep learning; YOLOv7; ACmix; computer vision; small object detection; traffic sign detection

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print