SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Avazov K, Jamil MK, Muminov B, Abdusalomov AB, Cho YI. Sensors (Basel) 2023; 23(16).

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s23167078

PMID

37631614

PMCID

PMC10458310

Abstract

Fire incidents occurring onboard ships cause significant consequences that result in substantial effects. Fires on ships can have extensive and severe wide-ranging impacts on matters such as the safety of the crew, cargo, the environment, finances, reputation, etc. Therefore, timely detection of fires is essential for quick responses and powerful mitigation. The study in this research paper presents a fire detection technique based on YOLOv7 (You Only Look Once version 7), incorporating improved deep learning algorithms. The YOLOv7 architecture, with an improved E-ELAN (extended efficient layer aggregation network) as its backbone, serves as the basis of our fire detection system. Its enhanced feature fusion technique makes it superior to all its predecessors. To train the model, we collected 4622 images of various ship scenarios and performed data augmentation techniques such as rotation, horizontal and vertical flips, and scaling. Our model, through rigorous evaluation, showcases enhanced capabilities of fire recognition to improve maritime safety. The proposed strategy successfully achieves an accuracy of 93% in detecting fires to minimize catastrophic incidents. Objects having visual similarities to fire may lead to false prediction and detection by the model, but this can be controlled by expanding the dataset. However, our model can be utilized as a real-time fire detector in challenging environments and for small-object detection. Advancements in deep learning models hold the potential to enhance safety measures, and our proposed model in this paper exhibits this potential. Experimental results proved that the proposed method can be used successfully for the protection of ships and in monitoring fires in ship port areas. Finally, we compared the performance of our method with those of recently reported fire-detection approaches employing widely used performance matrices to test the fire classification results achieved.


Language: en

Keywords

deep learning; E-ELAN; fire; flame detection; ships; YOLOv7

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print