SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kleiman EM, Glenn CR, Liu RT. Nat. Rev. Psychol. 2023; 2(6): 347-359.

Copyright

(Copyright © 2023, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1038/s44159-023-00175-y

PMID

unavailable

Abstract

In the past decade, two themes have emerged across suicide research. First, according to meta-analyses, the ability to predict and prevent suicidal thoughts and behaviours is weaker than would be expected for the size of the field. Second, review and commentary papers propose that technological and statistical methods (such as smartphones, wearables, digital phenotyping and machine learning) might become solutions to this problem. In this Review, we aim to strike a balance between the pessimistic picture presented by these meta-analyses and the optimistic picture presented by review and commentary papers about the promise of advanced technological and statistical methods to improve the ability to understand, predict and prevent suicide. We divide our discussion into two broad categories. First, we discuss the research aimed at assessment, with the goal of better understanding or more accurately predicting suicidal thoughts and behaviours. Second, we discuss the literature that focuses on prevention of suicidal thoughts and behaviours. Ecological momentary assessment, wearables and other technological and statistical advances hold great promise for predicting and preventing suicide, but there is much yet to do.


Language: en

Keywords

Human behaviour; Psychology; Science; technology and society

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print