SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liu J, Liang Y, Chen Z, Li H, Zhang W, Sun J. Sensors (Basel) 2023; 23(14).

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s23146385

PMID

37514678

PMCID

PMC10383030

Abstract

The accurate prediction of vehicle speed is crucial for the energy management of vehicles. The existing vehicle speed prediction (VSP) methods mainly focus on road vehicles and rarely on off-road vehicles. In this paper, a double-layer VSP method based on backpropagation neural network (BPNN) and long short-term memory (LSTM) for off-road vehicles is proposed. First of all, considering the motion characteristics of off-road vehicles, the VSP problem is established and the relationship between the variables in the problem is carefully analyzed. Then, the double-layer VSP framework is presented, which consists of speed prediction and information update layers. The speed prediction layer established by using LSTM is to predict vehicle speed in the horizon, and the information update layer built by BPNN is to update the prediction information. Finally, with the help of mining truck and loader operation scenarios, the proposed VSP method is compared with the analytical method, BPNN prediction method, and recurrent neural network (RNN) prediction method in terms of speed prediction accuracy. The results show that, under the premise of ensuring the real-time prediction performance, the average prediction error of the proposed BPNN-LSTM prediction method under two operation scenarios reduces by 48.14%, 35.82% and 30.09% compared with the other three methods, respectively. The proposed speed prediction method provides a new solution for predicting the speed of off-road vehicles, effectively improving the speed prediction accuracy.


Language: en

Keywords

BPNN; LSTM; non-road vehicles; vehicle speed prediction

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print