SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Miljković N, Sodnik J. Behav. Res. Methods 2023; ePub(ePub): ePub.

Copyright

(Copyright © 2023, Holtzbrinck Springer Nature Publishing Group)

DOI

10.3758/s13428-023-02177-3

PMID

37488465

Abstract

We present a method to automatically calculate time to fixate (TTF) from the eye-tracker data in subjects with neurological impairment using a driving simulator. TTF presents the time interval for a person to notice the stimulus from its first occurrence. Precisely, we measured the time since the children started to cross the street until the drivers directed their look to the children. From 108 neurological patients recruited for the study, the analysis of TTF was performed in 56 patients to assess fit-, unfit-, and conditionally-fit-to-drive patients. The results showed that the proposed method based on the YOLO (you only look once) object detector is efficient for computing TTFs from the eye-tracker data. We obtained discriminative results for fit-to-drive patients by application of Tukey's honest significant difference post hoc test (p < 0.01), while no difference was observed between conditionally-fit and unfit-to-drive groups (p = 0.542). Moreover, we show that time-to-collision (TTC), initial gaze distance (IGD) from pedestrians, and speed at the hazard onset did not influence the result, while the only significant interaction is among fitness, IGD, and TTC on TTF. Obtained TTFs are also compared with the perception response times (PRT) calculated independently from eye-tracker data and YOLO. Although we reached statistically significant results that speak in favor of possible method application for assessment of fitness to drive, we provide detailed directions for future driving simulation-based evaluation and propose processing workflow to secure reliable TTF calculation and its possible application in for example psychology and neuroscience.


Language: en

Keywords

Fitness to drive; Object detection; Driving simulation; Eye tracker; Neurology patients; Time to fixate

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print