SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Adama S, Bogdan M. Brain Inform. 2023; 10(1): e16.

Copyright

(Copyright © 2023, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1186/s40708-023-00197-5

PMID

37450213

Abstract

Consciousness is something we experience in our everyday life, more especially between the time we wake up in the morning and go to sleep at night, but also during the rapid eye movement (REM) sleep stage. Disorders of consciousness (DoC) are states in which a person's consciousness is damaged, possibly after a traumatic brain injury. Completely locked-in syndrome (CLIS) patients, on the other hand, display covert states of consciousness. Although they appear unconscious, their cognitive functions are mostly intact. Only, they cannot externally display it due to their quadriplegia and inability to speak. Determining these patients' states constitutes a challenging task. The ultimate goal of the approach presented in this paper is to assess these CLIS patients consciousness states. EEG data from DoC patients are used here first, under the assumption that if the proposed approach is able to accurately assess their consciousness states, it will assuredly do so on CLIS patients too. This method combines different sets of features consisting of spectral, complexity and connectivity measures in order to increase the probability of correctly estimating their consciousness levels. The obtained results showed that the proposed approach was able to correctly estimate several DoC patients' consciousness levels. This estimation is intended as a step prior attempting to communicate with them, in order to maximise the efficiency of brain-computer interfaces (BCI)-based communication systems.


Language: en

Keywords

Connectivity; Brain–computer interface; Complexity; Consciousness; Disorders of consciousness; Electroencephalogram; Soft-clustering; Spectral analysis

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print