SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Salazar-Bermeo J, Moreno-Chamba B, Martínez-Madrid MC, Valero M, Rodrigo-García J, Hosseinian F, Martín-Bermudo F, Aguado M, de la Torre R, Martí N, Saura D. Molecules 2023; 28(8): e3552.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/molecules28083552

PMID

unavailable

Abstract

Gas chromatography (GC) techniques for analyzing and determining the cannabinoid profile in cannabis (Cannabis sativa L.) are widely used in standard laboratories; however, these methods may mislabel the profile when used under rapid conditions. Our study aimed to highlight this problem and optimize GC column conditions and mass spectrometry (MS) parameters to accurately identify cannabinoids in both standards and forensic samples. The method was validated for linearity, selectivity, and precision. It was observed that when tetrahydrocannabinol (Δ9-THC) and cannabidiolic acid (CBD-A) were examined using rapid GC conditions, the resulting derivatives generated identical retention times. Wider chromatographic conditions were applied. The linear range for each compound ranged from 0.02 μg/mL to 37.50 μg/mL. The R2 values ranged from 0.996 to 0.999. The LOQ values ranged from 0.33 μg/mL to 5.83 μg/mL, and the LOD values ranged from 0.11 μg/mL to 1.92 μg/mL. The precision values ranged from 0.20% to 8.10% RSD. In addition, forensic samples were analyzed using liquid chromatography (HPLC-DAD) in an interlaboratory comparison test, with higher CBD and THC content than GC-MS determination (p < 0.05) in samples. Overall, this study highlights the importance of optimizing GC techniques to avoid mislabeling cannabinoids in cannabis samples.


Language: en

Keywords

cannabinoids; gas chromatography (GC); HPLC; overlapping; validation

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print