SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hrytsun O. Transp. Technol. 2023; 4(1): 12-20.

Copyright

(Copyright © 2023, Lviv Polytechnic National University)

DOI

10.23939/tt2023.01.012

PMID

unavailable

Abstract

The problem of the change in the speed of traffic flow at different traffic volumes and compositions is researched in this study. The section of the road network with different geometric parameters (descent, ascent and horizontal section) was chosen for the study. The method of investigation of traffic flow's speed and factors which have an impact on the reduction of road network capacity are analyzed. The change in the coefficients of the unevenness of traffic flow by hours of the day in the studied area was determined and a graph of the distribution of traffic volume by hours of the day was built. A diagram of the section was built to determine the speed of the traffic flow, on which the movement along the horizontal section, uphill and downhill movement is present. It was established that at a traffic volume of 700-800 p.c.u./h, the traffic flow moves at a constant speed (up to 10-15 km/h). Cumulative curves of traffic flow speed' distribution characterizing modes of traffic flow on the road network were built. It is determined that at volume-capacity ratio 0< z ≤ 0,4 on three investigated sections traffic flow moves with the speed from 35 km/h to 59 km/h. In the specialized software product PTV VISSIM, the simulation of the traffic flow on the horizontal section, ascent and descent has been developed. Using the MATHLAB software environment, it is shown how the speed of the traffic flow changes depending on the volume-capacity ratio and the share of the heterogeneous traffic flow. It was established that the highest speed of the flow is observed during the downhill movement - 58.62 km/h at the volume-capacity ratio - 0.13 and the share of heterogeneous traffic flow - 1.0 (100% cars). At a volume-capacity ratio of 0.88 and existing road conditions, the speed of traffic flow on the horizontal section and during uphill movement is almost the same (the average deviation is 6%). It can be explained by the fact that at a volume-capacity ratio of 0.88, traffic flow is in the traffic jam, hence, the speed of movement on the three sections is the same.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print