SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li H, Gao Q, Zhang Z, Zhang Y, Ren G. Accid. Anal. Prev. 2023; 191: e107205.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.aap.2023.107205

PMID

37413700

Abstract

Secondary crashes occur within the spatial and temporal impact area of primary crashes, resulting in traffic delays and safety problems. While most existing studies focus on the likelihood of secondary crashes, predicting the spatio-temporal location of secondary crashes could offer valuable insights for implementing prevention strategies. This includes guiding the deployment of emergency response measures and determining appropriate speed limits. The main objective of this study is to develop a prediction method for the spatial and temporal locations of secondary crashes. A hybrid deep learning model SSAE-LSTM is proposed by combining stacked sparse auto-encoder (SSAE) and long short-term memory network (LSTM). Traffic and crash data on the California I-880 highway covering the period of 2017-2021 are collected. The identification of secondary crashes is performed by the speed contour map method. The time and distance gaps between primary and secondary crashes are modeled using multiple 5-minute interval traffic variables as inputs. Multiple models are developed for benchmarking purposes, including PCA-LSTM, which incorporates principal component analysis (PCA) and LSTM, SSAE-SVM, which incorporates SSAE and support vector machine (SVM), and back propagation neural network (BPNN). The performance comparison indicates that the hybrid SSAE-LSTM model outperforms the other models in terms of both spatial and temporal prediction. In particular, SSAE4-LSTM1 (with 4 SSAE layers and 1 LSTM layer) demonstrates superior spatial prediction performance, while SSAE4-LSTM2 (with 4 SSAE layers and 2 LSTM layers) excels in temporal prediction. A joint spatio-temporal evaluation is also conducted to measure the overall accuracy of the optimal models over different permitted spatio-temporal ranges. Finally, practical suggestions are provided for secondary crash prevention.


Language: en

Keywords

Road safety; Auto-encoder; Long short-term memory network; Secondary crash; Spatial and temporal gaps

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print