SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Fu J, Abdel-Aty M, Yan X. Accid. Anal. Prev. 2023; 190: e107178.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.aap.2023.107178

PMID

37364362

Abstract

Time-specific Safety Performance Functions (SPFs) were proposed to achieve accurate and dynamic crash frequency predictions. Unfortunately, some states do not have or archive the needed high-resolution traffic data to develop time-specific SPFs. This study proposes a novel iterative imputation method to impute the 100% missing volume and speed data from different states with similar crash rates. First, this study calculated the crash rates for 18 states and applied the One-Way Analysis of variance (ANOVA) test to group the states with similar crash rates. Second, as an example FL and VA, which both have traffic data, were used to test the proposed iterative imputation method. The results indicated that the imputed traffic data could capture the same traffic pattern as the real-collected traffic data. Further, the Mean Absolute Error (MAE) between the imputed Ln Volume and the real-collected Ln Volume for FL is only 2.47 vehicles for each segment for three hours. The MAE between the imputed Ln AvgSpeed and the real-collected Ln AvgSpeed for FL is only 1.36 mph. The Mean Absolute Percentage Error (MAPE) between the imputed Ln Volume and the real-collected Ln Volume is 11.07%. Meanwhile, the MAPE between the imputed Ln AvgSpeed and the real-collected Ln AvgSpeed is 7.40%. Finally, this study applied the proposed iterative imputation method to develop time-specific SPFs for the state without traffic data and compared the results. The results illustrated that the time-specific SPFs developed by imputed traffic data perfectly reflected the significant variables for both morning and afternoon peak models, with a prediction accuracy of 87.1% for the morning peak model.


Language: en

Keywords

Data imputation; Freeway; Negative binomial model; Safety performance function; Time-specific

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print