SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li S, Sun X. PeerJ Comput. Sci. 2023; 9: e1417.

Copyright

(Copyright © 2023, PeerJ)

DOI

10.7717/peerj-cs.1417

PMID

37346715

PMCID

PMC10280573

Abstract

Natural disasters are usually sudden and unpredictable, so it is too difficult to infer them. Reducing the impact of sudden natural disasters on the economy and society is a very effective method to control public opinion about disasters and reconstruct them after disasters through social media. Thus, we propose a public sentiment feature extraction method by social media transmission to realize the intelligent analysis of natural disaster public opinion. Firstly, we offer a public opinion analysis method based on emotional features, which uses feature extraction and Transformer technology to perceive the sentiment in public opinion samples. Then, the extracted features are used to identify the public emotions intelligently, and the collection of public emotions in natural disasters is realized. Finally, through the collected emotional information, the public's demands and needs in natural disasters are obtained, and the natural disaster public opinion analysis system based on social media communication is realized. Experiments demonstrate that our algorithm can identify the category of public opinion on natural disasters with an accuracy of 90.54%. In addition, our natural disaster public opinion analysis system can deconstruct the current situation of natural disasters from point to point and grasp the disaster situation in real-time.


Language: en

Keywords

Emotion feature; Public opinion analysis; Social media communication

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print