SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mussone L, Alizadeh Meinagh M. Safety (Basel) 2023; 9(2): e20.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/safety9020020

PMID

unavailable

Abstract

One way to reduce road crashes is to determine the main influential factors among a long list that are attributable to driver behavior, environmental conditions, vehicle features, road type, and traffic signs. Hence, selecting the best modelling tool for extracting the relations between crash factors and their outcomes is a crucial task. To analyze the road crash data of Milan City, Italy, gathered between 2014-2017, this study used artificial neural networks (ANNs), generalized linear mixed-effects (GLME), multinomial regression (MNR), and general nonlinear regression (NLM), as the modelling tools. The data set contained 35,182 records of road crashes with injuries or fatalities. The findings showed that unbalanced and incomplete data sets had an impact on outcome performance, and data treatment methods could help overcome this problem. Age and gender were the most influential recurrent factors in crashes. Additionally, ANNs demonstrated a superior capability to approximate complicated relationships between an input and output better than the other regression models. However, they cannot provide an analytical formulation, but can be used as a baseline for other regression models. Due to this, GLME and MNR were utilized to gather information regarding the analytical framework of the model, that aimed to construct a particular NLM.


Language: en

Keywords

artificial neural networks; driver behavior; model performance analysis; regression models; road crashes

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print