SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zhang Y, Loder A, Rempe F, Bogenberger K. Transp. Res. Rec. 2023; 2677(5): 103-116.

Copyright

(Copyright © 2023, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/03611981221128279

PMID

unavailable

Abstract

The market for on-demand mobility services is growing worldwide. These services include, for example, ride-hailing, ride-sharing, and car-sharing. Large-scale fleets of such services collect GPS trajectory (probe vehicle) data constantly everywhere in the network. At a certain penetration rate, this data becomes representative of the entire road network. It can give valuable insights into traffic dynamics and the evolution of congestion. In this paper, we use such GPS trajectory data from Chengdu, China, to investigate the stability and recurrence of macroscopic traffic patterns. Using the two-fluid theory, we find that the two-fluid coefficients are robust on between-day variation, not only supporting the theory itself but also emphasizing that the general evolution of traffic is a robust pattern. We investigate the deviations from the model using time series analysis of the residuals of the two-fluid model. Here, we find evidence for daily and weekly seasonality in the residuals, indicating that congestion patterns are convincingly recurring. These patterns can be used for network-wide traffic state prediction. We conclude that GPS trajectory data from large on-demand mobility fleets is a promising data source for observing traffic patterns in urban road networks once the data becomes representative.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print