SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Jiao Y, Tan Y, Zhang X, Sun Z, Fu L, Wen C, Jiang C. Transp. Res. Rec. 2023; 2677(5): 11-23.

Copyright

(Copyright © 2023, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/03611981221127010

PMID

unavailable

Abstract

Driver fatigue has a direct impact on urban railway transit (URT) drivers' driving behavior and can cause driver error. The existing methods for fatigue detection mainly train the models with supervised learning, relying heavily on the annotation of recorded data. However, labeled data are unobtainable in some environments, especially for URT driver fatigue levels during actual driving. Therefore, this study proposes a fatigue detection method using unlabeled heart rate variability data to monitor URT driver fatigue in actual working conditions. By utilizing the existing conclusions with regard to factors contributing to fatigue and physiological changes, this study annotated a small number of samples and then used a novel positive and unlabeled learning algorithm based on nearest neighbors and random forest to divide samples into different fatigue levels. The proposed method was evaluated using the URT driver fatigue data sets collected in the lab. Binary classification achieved an accuracy of 79.0%. However, the accuracy of three-class classification was only 55.7%. In addition, the proposed method performed as well using the field data set as it did using the lab data set. The results show the high generalization performance of the proposed method, which could contribute to addressing the issue of lack of labeled training data for fatigue detection in actual working conditions.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print