SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Mookiah MRK, Puch-Solis R, Nic Daeid N. Forensic Sci. Int. 2023; 349: e111734.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.forsciint.2023.111734

PMID

37267700

Abstract

Ballistics (the linkage of bullets and cartridge cases to weapons) is a common type of evidence encountered in criminal cases around the world. The interest lies in determining whether two bullets were fired using the same firearm. This paper proposes an automated method to classify bullets from surface topography and Land Engraved Area (LEA) images of the fired pellets using machine and deep learning methods. The curvature of the surface topography was removed using loess fit and features were extracted using Empirical Mode Decomposition (EMD) followed by various entropy measures. The informative features were identified using minimum Redundancy Maximum Relevance (mRMR), finally the classification was performed using Support Vector Machines (SVM), Decision Tree (DT) and Random Forest (RF) classifiers. The results revealed a good predictive performance. In addition, the deep learning model DenseNet121 was used to classify the LEA images. DenseNet121 provided a higher predictive performance than SVM, DT and RF classifiers. Moreover, the Grad-CAM technique was used to visualise the discriminative regions in the LEA images. These results suggest that the proposed deep learning method can be used to expedite the linkage of projectiles to firearms and assist in ballistic examinations. In this work, the bullets that were compared were air pellets fired from both air rifles and a high velocity air pistol. Air guns were used to collect the data because they were more accessible than other firearms and could be used as a proxy, delivering comparable LEAs. The methods developed here can be used as a proof-of-concept and are easily expandable to bullet and cartridge case identification from any weapon.


Language: en

Keywords

Image analysis; Machine learning; Deep learning; Air weapons; Automated feature extraction; Empirical mode decomposition; Firearm identification; Surface topography measurements

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print