SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tang X, Bi R, Wang Z. Accid. Anal. Prev. 2023; 189: e107123.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.aap.2023.107123

PMID

37257354

Abstract

Previous researches have demonstrated that traffic crashes in urban areas are geographical events and strongly linked to local characteristics such as road network and land attributes. However, with a significant emphasis on moving-vehicle crashes, the spatial pattern of fixed-object crashes is unclear so far. The difference between these two types of crashes, and whether existing spatial tools such as geographically weighted regression can interpretate the occurrence mode have not been investigated before. To fill this gap, this paper focuses on understanding the spatial features and occurrence of these two types of crash, i.e., moving-vehicle and fixed-object on the city level. Crash data from Dalian, China were aggregated into subdistricts and calibrated with multi-scale geographically weighted regression (MGWR) models. A noticeable but similar clustering pattern was revealed in both types, with spatial overlap of their accident-prone regions. The spatial influence of explanatory variables (road network, geographic, demographic, socio-economic, and land-use variables) was also found mostly similar in both types of crashes. However, fixed-object crash in downtown is more affected by node count, while POI entrance/exit count, especially those in areas with more industrial zones tend to significantly reduce crash risk. In both types of crashes, terrain slope rather than elevation is found to mitigate the crash risk, especially in the downtown area. Compared to traditional Geographically Weighted Regression (GWR) with a fixed bandwidth, the improvement in modeling performance using MGWR highlights the reasonability and benefits to consider the influence scale of each contributing factor in urban spatial analysis of traffic collisions. This study could help transportation authorities identify high-risk regions, understand their contributing factors and take precautions for improving the local traffic safety.


Language: en

Keywords

Spatial analysis; Traffic crash; Accident-prone region; Fixed-object crash; Multi-scale geographically weighted regression

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print