SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zeng Q, Wang Q, Zhang K, Wong SC, Xu P. Accid. Anal. Prev. 2023; 189: e107119.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.aap.2023.107119

PMID

37235968

Abstract

This paper conducted a comprehensive study on the injury severity of motor vehicle-pedestrian crashes at 489 urban intersections across a dense road network based on high-resolution accident data recorded by the police from 2010 to 2019 in Hong Kong. Given that accounting for the spatial and temporal correlations simultaneously among crash data can contribute to unbiased parameter estimations for exogenous variables and improved model performance, we developed spatiotemporal logistic regression models with various spatial formulations and temporal configurations. The results indicated that the model with the Leroux conditional autoregressive prior and random walk structure outperformed other alternatives in terms of goodness-of-fit and classification accuracy. According to the parameter estimates, pedestrian age, head injury, pedestrian location, pedestrian actions, driver maneuvers, vehicle type, first point of collision, and traffic congestion status significantly affected the severity of pedestrian injuries. On the basis of our analysis, a range of targeted countermeasures integrating safety education, traffic enforcement, road design, and intelligent traffic technologies were proposed to improve the safe mobility of pedestrians at urban intersections. The present study provides a rich and sound toolkit for safety analysts to deal with spatiotemporal correlations when modeling crashes aggregated at contiguous spatial units within multiple years.


Language: en

Keywords

Bayesian inference; Injury severity analysis; Pedestrian crashes; Spatiotemporal correlation; Urban intersections

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print