SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zheng Y, Wen X, Cui P, Cao H, Chai H, Hu R, Yu R. Accid. Anal. Prev. 2023; 189: e107118.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.aap.2023.107118

PMID

37235966

Abstract

Driving behavior intervention is a dominant traffic safety countermeasure being implemented that has substantially reduced crash occurrence. However, during implementation, the intervention strategy faces the curse of dimensionality as there are multiple candidate intervention locations with various intervention measures and options. Quantifying the interventions' safety benefits and further implementing the most effective ones could avoid too frequent interventions which may lead to counterproductive safety impacts. Traditional intervention effects quantification approaches rely on observational data, thus failing to control confounding variables and leading to biased results. In this study, a counterfactual safety benefits quantification method for en-route driving behavior interventions was proposed. Empirical data from online ride-hailing services were employed to quantify the safety benefits of en-route safety broadcasting to speed maintenance behavior. Specifically, to effectively control the impacts of confounding variables on the quantification results of interventions, the "if without intervention" case of the intervention case is inferred based on the structural causality model according to the Theory of Planned Behavior (TPB). Then, a safety benefits quantification method based on Extreme Value Theory (EVT) was developed to connect changes of speed maintenance behavior with crash occurrence probabilities. Furthermore, a closed-loop evaluation and optimization framework for the various behavior interventions was established and applied to a subset of Didi's online ride-hailing service drivers (more than 1.35 million). Analyses results indicated safety broadcasting could effectively reduce driving speed by approximately 6.30 km/h and contribute to an approximate 40% reduction in speeding-related crashes. Besides, empirical application results showed that the whole framework contributed to a remarkable reduction in the fatality rate per 100 million km, from an average of 0.368 to 0.225. Finally, directions for future research in terms of data, counterfactual inference methodology, and research subjects have been discussed.


Language: en

Keywords

Counterfactual inference; Extreme Value Theory; Safety benefits; Structural Equation Modeling; Theory of Planned Behavior

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print