SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Nadeem H, Javed K, Nadeem Z, Khan MJ, Rubab S, Yon DK, Naqvi RA. Sensors (Basel) 2023; 23(9).

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s23094466

PMID

37177670

PMCID

PMC10181670

Abstract

Hundreds of people are injured or killed in road accidents. These accidents are caused by several intrinsic and extrinsic factors, including the attentiveness of the driver towards the road and its associated features. These features include approaching vehicles, pedestrians, and static fixtures, such as road lanes and traffic signs. If a driver is made aware of these features in a timely manner, a huge chunk of these accidents can be avoided. This study proposes a computer vision-based solution for detecting and recognizing traffic types and signs to help drivers pave the door for self-driving cars. A real-world roadside dataset was collected under varying lighting and road conditions, and individual frames were annotated. Two deep learning models, YOLOv7 and Faster RCNN, were trained on this custom-collected dataset to detect the aforementioned road features. The models produced mean Average Precision (mAP) scores of 87.20% and 75.64%, respectively, along with class accuracies of over 98.80%; all of these were state-of-the-art. The proposed model provides an excellent benchmark to build on to help improve traffic situations and enable future technological advances, such as Advance Driver Assistance System (ADAS) and self-driving cars.


Language: en

Keywords

deep learning; object detection; computer vision; Driver Assistance; Faster-RCNNs; traffic signs; YOLOv7

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print