SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tsiamitros N, Mahapatra T, Passalidis I, K K, Pipelidis G. Sensors (Basel) 2023; 23(9).

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s23094301

PMID

37177502

PMCID

PMC10181593

Abstract

Indoor localization is used to locate objects and people within buildings where outdoor tracking tools and technologies cannot provide precise results. This paper aims to improve analytics research, focusing on data collected through indoor localization methods. Smart devices recurrently broadcast automatic connectivity requests. These packets are known as Wi-Fi probe requests and can encapsulate various types of spatiotemporal information from the device carrier. In addition, in this paper, we perform a comparison between the Prophet model and our implementation of the autoregressive moving average (ARMA) model. The Prophet model is an additive model that requires no manual effort and can easily detect and handle outliers or missing data. In contrast, the ARMA model may require more effort and deep statistical analysis but allows the user to tune it and reach a more personalized result. Second, we attempted to understand human behaviour. We used historical data from a live store in Dubai to forecast the use of two different models, which we conclude by comparing. Subsequently, we mapped each probe request to the section of our place of interest where it was captured. Finally, we performed pedestrian flow analysis by identifying the most common paths followed inside our place of interest.


Language: en

Keywords

ARMA model; indoor localization; indoor positioning; pedestrian flow analysis; Prophet model

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print