SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Tanahashi S, Ujike H, Kozawa R, Ukai K. J. Neuroengineering Rehabil. 2007; 4(1): 39.

Copyright

(Copyright © 2007, Holtzbrinck Springer Nature Publishing Group - BMC)

DOI

10.1186/1743-0003-4-39

PMID

17922922

PMCID

PMC2169230

Abstract

BACKGROUND: Visual motion often provokes vection (the induced perception of self-motion) and postural movement. Postural movement is known to increase during vection, suggesting the same visual motion signal underlies vection and postural control. However, self-motion does not need to be consciously perceived to influence postural control. Therefore, visual motion itself may affect postural control mechanisms. The purpose of the present study was to investigate the effects of visual motion and vection on postural movements during and after exposure to a motion stimulus. METHODS: Eighteen observers completed four experimental conditions, the order of which was counterbalanced across observers. Conditions corresponded to the four possible combinations of rotation direction (CW/CCW) of the visually simulated roll motion stimulus and the two different visual stimulus patterns. The velocity of the roll motion was held constant in all conditions at 60 deg/s. Observers assumed the standard Romberg stance, and postural movements were measured using a force platform and a head position sensor affixed to a helmet they wore. Observers pressed a button when they perceived vection. Postural responses and psychophysical parameters related to vection were analyzed. RESULTS: During exposure to the moving stimulus, body sway and head position of all observers moved in the same direction as the stimulus. Moreover, they deviated more during vection perception than no vection-perception, and during no vection-perception than no stimulus-motion. The postural movements also fluctuated more during vection perception than no vection-perception, and during no vection-perception than no stimulus-motion, both in the left/right (L/R) and anterior/posterior (A/P) direction. There was no clear habituation for vection and posture, and no effect of stimulus type. CONCLUSIONS: Our results suggested that stimulus motion itself affects postural control, and supported the idea that the same visual motion signal is used for vection and postural control. We speculated that the mechanisms underlying the processing of visual motion signals for postural control and vection perception operate using different thresholds, and that a frame of reference for body orientation perception changed along with vection perception induced further increment of postural sway.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print