SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Horiguchi A, Numazawa S. J. Toxicol. Sci. 2023; 48(5): 285-298.

Copyright

(Copyright © 2023, Doku Sayo Kenkyukai)

DOI

10.2131/jts.48.285

PMID

37121743

Abstract

Chemical plants must handle a wide variety of hazardous substances. To ensure safety in such plants, it is necessary to conduct extensive and highly accurate risk assessments. In this study, we aimed at developing a method that enables flexible and accurate risk assessment. We combined two different simulation tools to reproduce the phenomena of toxic gas leakage and diffusion as well as its impact on human health. The atmospheric diffusion after the leakage of toxic gas was simulated by computational fluid dynamics (CFD). Assuming the movement line of the person, toxic gas absorption and subsequent metabolism were calculated by a physiologically based pharmacokinetic (PBPK) model. From this, changes in blood concentration of toxic substances with time were simulated and we evaluated the effects of toxic gases on human body. Ethanol was selected as a toxic gas in this study. Based on the assumed scenario, the diffusion of leaked ethanol gas was calculated by CFD leading to the confirmation that the concentration of ethanol gas varies significantly with wind speed, human position, and elapsed time. The PBPK model showed that the maximum blood concentration of ethanol was 161 µmol/L, which is sufficiently low compared to that of ethanol poisoning (i.e., 10,900 µmol/L). These results suggest that the effects on the human body are relatively low and the evacuation can be performed safely. Compared to conventional methods of risk assessment, our new method allows the risk assessment of multiple scenarios, namely interindividual differences, activity status and the used of protective equipment.


Language: en

Keywords

Risk assessment; Computational fluid dynamics (CFD); Physiologically based pharmacokinetic (PBPK) model

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print