SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Marques SF, Pitombo CS. Appl. Spat. Anal. Policy 2023; 16(1): 277-313.

Copyright

(Copyright © 2023, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s12061-022-09482-y

PMID

unavailable

Abstract

Boarding and alighting modeling at the bus stop level is an important tool for operational planning of public transport systems, in addition to contributing to transit-oriented development. The interest variables, in this case, present two particularities that strongly influence the performance of proposed estimates: they demonstrate spatial dependence and are count data. Moreover, in most cases, these data are not easy to collect. Thus, the present study proposes a comparison of approaches for transit ridership modeling at the bus stop level, applying linear, Poisson, Geographically Weighted and Geographically Weighted Poisson (GWPR) regressions, as well as Universal Kriging (UK), to the boarding and alighting data along a bus line in the city of São Paulo, Brazil. The results from goodness-of-fit measures confirmed the assumption that adding asymmetry and spatial autocorrelation, isolated and together, to the transportation demand modeling, contributes to a gradual improvement in the estimates, highlighting the GWPR and UK spatial estimation techniques. Moreover, the spatially varying relationships between the variables of interest (boardings and alightings) and their predictors (land use and transport system features around the bus stops), shown in the present study, may support land use policies toward transit-oriented development. In addition, by using an approach with little information, the good results achieved proved that satisfactory boarding and alighting modeling can be done in regions where there is a lack of travel demand data, as in the case of emerging countries.


Language: en

Keywords

Alighting per bus stop; Boarding per bus stop; Geographically Weighted Poisson Regression; Linear regression; Poisson regression; Universal Kriging

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print