SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Almannaa M, Zawad MN, Moshawah M, Alabduljabbar H. Int. J. Inj. Control Safe. Promot. 2023; ePub(ePub): ePub.

Copyright

(Copyright © 2023, Informa - Taylor and Francis Group)

DOI

10.1080/17457300.2023.2202660

PMID

37079354

Abstract

Investigating the contributing factors to traffic crash severity is a demanding topic in research focusing on traffic safety and policies. This research investigates the impact of 16 roadway condition features and vacations (along with the spatial and temporal factors and road geometry) on crash severity for major intra-city roads in Saudi Arabia. We used a crash dataset that covers four years (Oct. 2016 - Feb. 2021) with more than 59,000 crashes. Machine learning algorithms were utilized to predict the crash severity outcome (non-fatal/fatal) for three types of roads: single, multilane, and freeway. Furthermore, features that have a strong impact on crash severity were examined.

RESULTS show that only 4 out of 16 road condition variables were found to be contributing to crash severity, namely: paints, cat eyes, fence side, and metal cable. Additionally, vacation was found to be a contributing factor to crash severity, meaning crashes that occur on vacation are more severe than non-vacation days.


Language: en

Keywords

feature importance; machine learning classifiers; Road crash severity; roadway conditions; SHAP

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print