SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hou Z, Darr J, Zhang M. Transp. Res. Rec. 2023; 2677(3): 1625-1636.

Copyright

(Copyright © 2023, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/03611981221126509

PMID

unavailable

Abstract

Many places around the world periodically suffer from wildfires that threaten lives and disrupt normal traffic operations. Poor traffic performance during wildfires can inhibit the effectiveness of evacuations. Understanding traffic performance during a wildfire would therefore help transportation operators develop emergency traffic control plans. In this study, we developed a traffic speed and flow prediction model that uses support vector regression (SVR), for use during wildfire incidents. This was constructed using historical data for wildfires in California from 2010 to 2019, which were paired with records of the traffic speed and flow on adjacent highways and the prevailing weather conditions during the wildfire events. The results showed that traffic performance during a wildfire could be predicted using the SVR model. Based on our prediction results, we recommend that policies be implemented to encourage or mandate more detailed data collection of wildfire events, such as the fire?s boundary over time, to facilitate better prediction results in models like the one proposed in this paper. This paper should inspire further work on the topic to improve the model and provide a reliable prediction tool for transportation operators in the future.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print