SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Kang D, Li Z, Levin MW. J. Transp. Saf. Secur. 2022; 14(12): 2074-2110.

Copyright

(Copyright © 2022, Southeastern Transportation Center, and Beijing Jiaotong University, Publisher Informa - Taylor and Francis Group)

DOI

10.1080/19439962.2021.1998939

PMID

unavailable

Abstract

Autonomous intersection management (AIM) has been widely researched, but previous studies assume that vehicles will follow assigned trajectories precisely. The purpose of this paper is to investigate the safety buffers needed between intersecting vehicles to avoid a collision if a vehicle malfunctions. We optimize vehicle trajectories by deciding the arrival times at each conflict point (point of possible intersection with other vehicles) along each vehicle's trajectory. Because intersecting vehicles rely on the intersection manager (IM) to detect and communicate malfunctions, the reaction time from the IM determines the minimum safety buffer needed. Although a smaller reaction time reduces the safety buffer, it increases the probability that the IM falsely detects a malfunction, instructing vehicles to stop and creating unnecessary delays. This paper develops a mathematical safety buffer for intersecting vehicles, linearizes this time separation, and constructs a combined mixed-integer linear program. A complete protocol is presented and simulated for normal circumstances, emergency circumstances, and recovery circumstances. Sensitivity analyses on various reaction times show the tradeoff between low reaction times (more false positives) and high reaction times (greater safety buffer).


Language: en

Keywords

Autonomous intersection management; detection time; evasion planning

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print