SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Che J, He Y, Wu J. Sci. Rep. 2023; 13(1): e4525.

Copyright

(Copyright © 2023, Nature Publishing Group)

DOI

10.1038/s41598-023-31806-2

PMID

36941322

Abstract

Multi-object Tracking is an important issue that has been widely investigated in computer vision. However, in practical applications, moving targets are often occluded due to complex changes in the background, which leads to frequent pedestrian ID switches in multi-object tracking. To solve the problem, we present a multi-object tracking algorithm based on FairMOT and Circle Loss. In this paper, HRNet is adopted as the baseline. Then, Polarized Self-Attention is added to HRNet-w32 to obtain weights of helpful information based on its modeling advantages. Moreover, the re-identification branch is optimized, and the Circle Loss is selected as the loss function to acquire more discriminative pedestrian features and to distinguish different pedestrians. The method proposed is assessed on the public MOT17 datasets. The experimental results show that the MOTA score achieves 69.5%, IDF1 reaches 70.0%, and the number of ID switches (IDs) decreases 636 times compared to the TraDes algorithm.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print