SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Liu Y, Lyu X, Yang B, Fang Z, Hu D, Shi L, Wu B, Tian Y, Zhang E, Yang YC. JMIR Form. Res. 2023; 7: e44666.

Copyright

(Copyright © 2023, JMIR Publications)

DOI

10.2196/44666

PMID

36943366

Abstract

BACKGROUND: Early triage of patients with mushroom poisoning is essential for administering precise treatment and reducing mortality. To our knowledge, there has been no established method to triage patients with mushroom poisoning based on clinical data.

OBJECTIVE: The purpose of this work was to construct a triage system to identify patients with mushroom poisoning based on clinical indicators using several machine learning approaches and to assess the prediction accuracy of these strategies.

METHODS: In all, 567 patients were collected from 5 primary care hospitals and facilities in Enshi, Hubei Province, China, and divided into 2 groups; 322 patients from 2 hospitals were used as the training cohort, and 245 patients from 3 hospitals were used as the test cohort. Four machine learning algorithms were used to construct the triage model for patients with mushroom poisoning. Performance was assessed using the area under the receiver operating characteristic curve (AUC), decision curve, sensitivity, specificity, and other representative statistics. Feature contributions were evaluated using Shapley additive explanations.

RESULTS: Among several machine learning algorithms, extreme gradient boosting (XGBoost) showed the best discriminative ability in 5-fold cross-validation (AUC=0.83, 95% CI 0.77-0.90) and the test set (AUC=0.90, 95% CI 0.83-0.96). In the test set, the XGBoost model had a sensitivity of 0.93 (95% CI 0.81-0.99) and a specificity of 0.79 (95% CI 0.73-0.85), whereas the physicians' assessment had a sensitivity of 0.86 (95% CI 0.72-0.95) and a specificity of 0.66 (95% CI 0.59-0.73).

CONCLUSIONS: The 14-factor XGBoost model for the early triage of mushroom poisoning can rapidly and accurately identify critically ill patients and will possibly serve as an important basis for the selection of treatment options and referral of patients, potentially reducing patient mortality and improving clinical outcomes.


Language: en

Keywords

machine learning; triage; model; extreme gradient boosting; mushroom poisoning; XGBoost

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print