SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Lee H, Ko D, Nam J. Sensors (Basel) 2023; 23(5).

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s23052483

PMID

36904686

PMCID

PMC10006962

Abstract

In this paper, an optimal design model was developed to reduce noise and secure the torque performance of a brushless direct-current motor used in the seat of an autonomous vehicle. An acoustic model using finite elements was developed and verified through the noise test of the brushless direct-current motor. In order to reduce noise in the brushless direct-current motor and obtain a reliable optimization geometry of noiseless seat motion, parametric analysis was performed through the design of experiments and Monte Carlo statistical analysis. The slot depth, stator tooth width, slot opening, radial depth, and undercut angle of the brushless direct-current motor were selected as design parameters for design parameter analysis. Then, a non-linear prediction model was used to determine the optimal slot depth and stator tooth width to maintain the drive torque and minimize the sound pressure level at 23.26 dB or lower. The Monte Carlo statistical method was used to minimize the deviation of the sound pressure level caused by the production deviation of the design parameters. The result is that the SPL was 23.00-23.50 dB with a confidence level of approximately 99.76% when the level of production quality control was set at 3σ.


Language: en

Keywords

design of experiment; Monte Carlo simulation; noise reduction; optimization; robust design

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print