SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Grindle D, Untaroiu C. Ann. Biomed. Eng. 2023; ePub(ePub): ePub.

Copyright

(Copyright © 2023, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s10439-023-03157-6

PMID

36795241

Abstract

Pedestrians who use wheelchairs (seated pedestrians) report higher mortality rates than standing pedestrians in vehicle-to-pedestrian collisions but the cause of this mortality is poorly understood. This study investigated the cause of seated pedestrian serious injuries (AIS 3+) and the effect of various pre-collision variables using finite element (FE) simulations. An ultralight manual wheelchair model was developed and tested to meet ISO standards. The GHBMC 50th percentile male simplified occupant model and EuroNCAP family car (FCR) and sports utility vehicle (SUV) were used to simulate vehicle collisions. A full factorial design of experiments (n = 54) was run to explore the effect of pedestrian position relative to the vehicle bumper, pedestrian arm posture, and pedestrian orientation angle relative to the vehicle. The largest average injury risks were at the head (FCR: 0.48 SUV: 0.79) and brain (FCR: 0.42 SUV: 0.50). The abdomen (FCR: 0.20 SUV: 0.21), neck (FCR: 0.08 SUV: 0.14), and pelvis (FCR: 0.02 SUV: 0.02) reported smaller risks. 50/54 impacts reported no thorax injury risk, but 3 SUV impacts reported risks ≥ 0.99. Arm (gait) posture and pedestrian orientation angle had larger effects on most injury risks. The most dangerous arm posture examined was when the hand was off the wheelchair handrail after wheel propulsion and the two more dangerous orientations were when the pedestrian faced 90° and 110° away from the vehicle. Pedestrian position relative to the vehicle bumper played little role in injury outcomes. The findings of this study may inform future seated pedestrian safety testing procedures to narrow down the most concerning impact scenarios and design impact tests around them.


Language: en

Keywords

Traffic accidents; Human body; Impact biomechanics; Finite element model; Injury biomechanics; Seated pedestrian protection

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print