SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Jiang G, Lam SK, He P, Ou C, Ai D. IEEE Trans. Intel. Transp. Syst. 2022; 23(1): 152-164.

Copyright

(Copyright © 2022, IEEE (Institute of Electrical and Electronics Engineers))

DOI

10.1109/TITS.2020.3008469

PMID

unavailable

Abstract

Transport mode identification (TMI), which infers the travel modes of user trajectories, is essential to facilitate an understanding of urban mobility patterns and passengers' choice behaviors with the goal of improving urban transportation systems. To achieve higher accuracy, existing TMI methods usually rely on mobility features obtained from densely sampled GPS trajectory points (e.g. 1 second per GPS point) or data measurements of additional inertial measurement unit (IMU) sensors (e.g. accelerometer, gyroscope, rotation vector). However, these lead to high energy consumption of the users' mobile devices. In this paper, we propose a novel deep learning framework, Multi-Scale Attributes Attention (MSAA) model, to extract discriminating trajectory features from GPS data only, without the need to increase its sampling rate. The proposed model first partitions the trajectories into different scales and extract the latent representation of local attributes at each scale. The MSAA model relies on Convolutional Neural Network (CNN) to capture the spatial correlation of different trajectory segments, and utilizes attention mechanism to select the most suitable local attributes on the different trajectory scales that can effectively characterize the various transport modes. Since the learned latent local attributes are significantly different from the global features (e.g. average/min/max travel speeds which are measurable quantities), an ensemble model based on Neural Decision Forest (NDF) is employed to fuse the heterogeneous features consisting of both measurable quantities and non-measurable elements for determining the transport mode. Experiments on real-world datasets demonstrate the competitive performance of the proposed approach compared to several state-of-the-art baselines, with average improvements in accuracy ranging from 0.76% to 6.4%. In addition, the proposed multi-scale local attributes well complement the global features. Our results show that by incorporating the local attributes, the detection performance improved by 2.3% on average compared to using only global features.


Language: en

Keywords

attention mechanism; CNN; Feature extraction; Global Positioning System; GPS trajectory; multi-scale local attributes; neural decision forest; Sensor phenomena and characterization; Smart phones; Trajectory; Transportation; Travel mode identification

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print