SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ward S, Hu S, Zecca M. Sensors (Basel) 2023; 23(3): e1416.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s23031416

PMID

36772456

Abstract

A little explored area of human activity recognition (HAR) is in people operating in relation to extreme environments, e.g., mountaineers. In these contexts, the ability to accurately identify activities, alongside other data streams, has the potential to prevent death and serious negative health events to the operators. This study aimed to address this user group and investigate factors associated with the placement, number, and combination of accelerometer sensors. Eight participants (age = 25.0 ± 7 years) wore 17 accelerometers simultaneously during lab-based simulated mountaineering activities, under a range of equipment and loading conditions. Initially, a selection of machine learning techniques was tested. Secondly, a comprehensive analysis of all possible combinations of the 17 accelerometers was performed to identify the optimum number of sensors, and their respective body locations. Finally, the impact of activity-specific equipment on the classifier accuracy was explored. The results demonstrated that the support vector machine (SVM) provided the most accurate classifications of the five machine learning algorithms tested. It was found that two sensors provided the optimum balance between complexity, performance, and user compliance. Sensors located on the hip and right tibia produced the most accurate classification of the simulated activities (96.29%). A significant effect associated with the use of mountaineering boots and a 12 kg rucksack was established.


Language: en

Keywords

machine learning; accelerometer; extreme environments; human activity recognition; inertial measurement unit; wearables

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print