SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cai S, Gou W, Wen W, Lu X, Fan J, Guo X. Plants (Basel) 2023; 12(3): e483.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/plants12030483

PMID

36771568

Abstract

Unmanned ground vehicles (UGV) have attracted much attention in crop phenotype monitoring due to their lightweight and flexibility. This paper describes a new UGV equipped with an electric slide rail and point cloud high-throughput acquisition and phenotype extraction system. The designed UGV is equipped with an autopilot system, a small electric slide rail, and Light Detection and Ranging (LiDAR) to achieve high-throughput, high-precision automatic crop point cloud acquisition and map building. The phenotype analysis system realized single plant segmentation and pipeline extraction of plant height and maximum crown width of the crop point cloud using the Random sampling consistency (RANSAC), Euclidean clustering, and k-means clustering algorithm. This phenotyping system was used to collect point cloud data and extract plant height and maximum crown width for 54 greenhouse-potted lettuce plants. The results showed that the correlation coefficient (R2) between the collected data and manual measurements were 0.97996 and 0.90975, respectively, while the root mean square error (RMSE) was 1.51 cm and 4.99 cm, respectively. At less than a tenth of the cost of the PlantEye F500, UGV achieves phenotypic data acquisition with less error and detects morphological trait differences between lettuce types. Thus, it could be suitable for actual 3D phenotypic measurements of greenhouse crops.


Language: en

Keywords

3D phenotyping platform; electric slide rail; LiDAR; low-cost UGV; point cloud processing

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print