SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Wang Y, Yang S, Li J, Xu S, Wang J. Int. J. Environ. Res. Public Health 2023; 20(3): e2278.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/ijerph20032278

PMID

36767644

Abstract

Driver disability has become an increasing factor leading to traffic accidents, especially for commercial vehicle drivers who endure high mental and physical pressure because of long periods of work. Once driver disability occurs, e.g., heart disease or heat stroke, the loss of driving control may lead to serious traffic incidents and public damage. This paper proposes a novel driving intervention system for autonomous danger avoidance under driver disability conditions, including a quantitative risk assessment module named the Emergency Safety Field (ESF) and a motion-planning module. The ESF considers three factors affecting hedging behavior: road boundaries, obstacles, and target position. In the field-based framework, each factor is modeled as an individual risk source generating repulsive or attractive force fields. Individual risk distributions are regionally weighted and merged into one unified emergency safety field denoting the level of danger to the ego vehicle. With risk evaluation, a path-velocity-coupled motion planning module was designed to generate a safe and smooth trajectory to pull the vehicle over. The results of our experiments show that the proposed algorithms have obvious advantages in success rate, efficiency, stability, and safety compared with the traditional method. Validation on multiple simulation and real-world platforms proves the feasibility and adaptivity of the module in traffic scenarios.


Language: en

Keywords

automated control; danger avoidance; driver disability; driving intervention; motion planning; risk evaluation

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print