SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yan K, Wang Y, Jia L, Wang W, Liu S, Geng Y. Accid. Anal. Prev. 2023; 184: e106991.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.aap.2023.106991

PMID

36773468

Abstract

In the past decades, marine accidents brought the serious loss of life and property and environmental contamination. With the accumulation of marine accident data, especially accident investigation reports, compared with subjective reasoning based on expert experience, data-driven methods for analysis and accident prevention are more comprehensive and objective. This paper aims to develop a content-aware corpus-based model for the analysis of marine accidents to mine the accident semantic features. The general research framework is established to combine accident data, expert prior knowledge, and semi-automated natural language processing (NLP) technology. The NLP models are optimized, fused, and applied to the case study of ship collision accidents. The results show that the proposed model can accurately and quickly extract hazards, accident causes, and scenarios from the accident reports, and perform semantic analysis for the latent relationships between them to extend the accident causation theory. This study can provide a powerful and innovative analysis tool for marine accidents for maritime traffic safety management departments and relevant research institutions.


Language: en

Keywords

Natural language processing; Accident analysis; Hazard identification; Marine accident; Topic model

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print