SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Galán-Llario M, Rodríguez-Zapata M, Fontán-Baselga T, Gramage E, Vicente-Rodriguez M, Zapico JM, de Pascual-Teresa B, Lasek AW, Herradón G. Neuropharmacology 2023; ePub(ePub): ePub.

Copyright

(Copyright © 2023, Elsevier Publishing)

DOI

10.1016/j.neuropharm.2023.109438

PMID

36706907

Abstract

Pleiotrophin (PTN) is a cytokine that modulates ethanol drinking and reward and regulates glial responses in different contexts. PTN is an inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ. Inhibition of RPTPβ/ζ reduces binge-like drinking in adult male mice. Whether inhibition of RPTPβ/ζ is effective in reducing ethanol consumption during adolescence and in both sexes remained to be studied. In this work, male and female adolescent mice underwent an intermittent access to ethanol (IAE) 2-bottle choice protocol. Treatment with MY10 (60 mg/kg, i.g.), a small-molecule RPTPβ/ζ inhibitor, reduced chronic 3-week ethanol consumption only in male mice. We detected an ethanol-induced overall decrease in hippocampal GFAPir and Iba1ir, independently of the treatment received, suggesting that RPTPβ/ζ is not key in the regulation of IAE-induced glial responses. However, we found a significant negative correlation between the size of microglial cells and the number of hippocampal neuronal progenitors only in male mice after IAE. This correlation was disrupted by treatment with MY10 before each drinking session, which may be related to the ability of MY10 to regulate the intensity of the perineuronal nets (PNNs) in the hippocampus in a sex-dependent manner. The data show for the first time that inhibition of RPTPβ/ζ reduces chronic voluntary ethanol consumption in adolescent mice in a sex-dependent manner. In addition, we show evidence for sex-specific differences in the effects of IAE on glial responses and hippocampal neurogenesis, which may be related to different actions of the RPTPβ/ζ signalling pathway in the brains of male and female mice.


Language: en

Keywords

Neuroinflammation; Perineuronal nets; Pleiotrophin; PTPRZ1

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print