SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Song W, Suandi SA. Sensors (Basel) 2023; 23(2): e749.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s23020749

PMID

36679542

Abstract

Recognizing traffic signs is an essential component of intelligent driving systems' environment perception technology. In real-world applications, traffic sign recognition is easily influenced by variables such as light intensity, extreme weather, and distance, which increase the safety risks associated with intelligent vehicles. A Chinese traffic sign detection algorithm based on YOLOv4-tiny is proposed to overcome these challenges. An improved lightweight BECA attention mechanism module was added to the backbone feature extraction network, and an improved dense SPP network was added to the enhanced feature extraction network. A yolo detection layer was added to the detection layer, and k-means++ clustering was used to obtain prior boxes that were better suited for traffic sign detection. The improved algorithm, TSR-YOLO, was tested and assessed with the CCTSDB2021 dataset and showed a detection accuracy of 96.62%, a recall rate of 79.73%, an F-1 Score of 87.37%, and a mAP value of 92.77%, which outperformed the original YOLOv4-tiny network, and its FPS value remained around 81 f/s. Therefore, the proposed method can improve the accuracy of recognizing traffic signs in complex scenarios and can meet the real-time requirements of intelligent vehicles for traffic sign recognition tasks.


Language: en

Keywords

intelligent vehicle; CCTSDB2021 dataset; k-means++; traffic sign; YOLOv4-tiny

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print