SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Zeng H, Guo J, Zhang H, Ren B, Wu J. Sensors (Basel) 2022; 23(1): e41.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s23010041

PMID

36616640

Abstract

Accurate prediction of aviation safety levels is significant for the efficient early warning and prevention of incidents. However, the causal mechanism and temporal character of aviation accidents are complex and not fully understood, which increases the operation cost of accurate aviation safety prediction. This paper adopts an innovative statistical method involving a least absolute shrinkage and selection operator (LASSO) and long short-term memory (LSTM). We compiled and calculated 138 monthly aviation insecure events collected from the Aviation Safety Reporting System (ASRS) and took minor accidents as the predictor. Firstly, this paper introduced the group variables and the weight matrix into LASSO to realize the adaptive variable selection. Furthermore, it took the selected variable into multistep stacked LSTM (MSSLSTM) to predict the monthly accidents in 2020. Finally, the proposed method was compared with multiple existing variable selection and prediction methods. The results demonstrate that the RMSE (root mean square error) of the MSSLSTM is reduced by 41.98%, compared with the original model; on the other hand, the key variable selected by the adaptive spare group lasso (ADSGL) can reduce the elapsed time by 42.67% (13 s). This shows that aviation safety prediction based on ADSGL and MSSLSTM can improve the prediction efficiency of the model while keeping excellent generalization ability and robustness.


Language: en

Keywords

prediction; adaptive sparse group lasso; aviation safety; inducement of accident; long short-term memory

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print