SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Ma N, Fan J, Wang W, Wu J, Jiang Y, Xie L, Fan R. Transp. Saf. Environ. 2022; 4(4): tdac026.

Copyright

(Copyright © 2022, Oxford University Press)

DOI

10.1093/tse/tdac026

PMID

unavailable

Abstract

Computer vision algorithms have been utilized for 3-D road imaging and pothole detection for over two decades. Nonetheless, there is a lack of systematic survey articles on state-of-the-art (SoTA) computer vision techniques, especially deep learning models, developed to tackle these problems. This article first introduces the sensing systems employed for 2-D and 3-D road data acquisition, including camera(s), laser scanners and Microsoft Kinect. It then comprehensively reviews the SoTA computer vision algorithms, including (1) classical 2-D image processing, (2) 3-D point cloud modelling and segmentation and (3) machine/deep learning, developed for road pothole detection. The article also discusses the existing challenges and future development trends of computer vision-based road pothole detection approaches: classical 2-D image processing-based and 3-D point cloud modelling and segmentation-based approaches have already become history; and convolutional neural networks (CNNs) have demonstrated compelling road pothole detection results and are promising to break the bottleneck with future advances in self/un-supervised learning for multi-modal semantic segmentation. We believe that this survey can serve as practical guidance for developing the next-generation road condition assessment systems.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print