SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Khattak A, Chan PW, Chen F, Peng H. Atmosphere (Basel) 2023; 14(1): e37.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/atmos14010037

PMID

unavailable

Abstract

Severe low-level wind shear (S-LLWS) in the vicinity of airport runways (25 knots or more) is a growing concern for the safety of civil aviation. By comprehending the causes of S-LLWS events, aviation safety can be enhanced. S-LLWS is a rare occurrence, but it is hazardous for approaching and departing aircraft. This study introduced the self-paced ensemble (SPE) framework and Shapley additive explanations (SHAP) interpretation system for the classification, prediction, and interpretation of LLWS severity. Doppler LiDAR- and PIREPs-based LLWS data from Hong Kong International Airport were obtained, trained, and evaluated to predict LLWS severity. The SPE framework was also compared to state-of-the-art tree-based models, including light gradient boosting machine, adaptive boosting, and classification and regression tree models. The SPE does not require prior data treatment; however, SMOTE-ENN was utilized to treat highly imbalanced LLWS training data for tree-based models. In terms of prediction performance, the SPE framework outperforms all tree-based models. Using SHAP analysis, the SPE was interpreted. It was determined that "runway 25LD", "mean hourly temperature", and "mean wind speed" were the most significant contributors to the occurrence of S-LLWS. The most optimistic projections for the occurrence of S-LLWS events at runway 25LD were during periods of low-to-moderate temperatures and relatively medium-to-high wind speeds. Similarly, the majority of S-LLWS events took place on the runway. Without the need for data augmentation during preprocessing, the SPE framework coupled with the SHAP interpretation system could be utilized effectively for the prediction and interpretation of LLWS severity. This study is an invaluable resource for aviation policymakers and air traffic safety analysts.


Language: en

Keywords

civil aviation safety; low-level wind shear; machine learning; pilot reports; self-paced ensemble; Shapley additive explanations

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print