SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Dai H, Zhu M, Yuan G, Niu Y, Shi H, Chen B. Appl. Sci. (Basel) 2023; 13(1): e375.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/app13010375

PMID

unavailable

Abstract

Due to the fragile physicochemical properties of hazardous chemicals, the chances of leakage and explosion during production, transportation, and storage are quite high. In recent years, hazardous chemical accidents have occurred frequently, posing a great threat to people's lives and property. Hence, it is crucial to analyze hazardous chemical accidents and establish corresponding warning mechanisms and safeguard measures. At present, most hazardous-chemical-accident data exist in text format. However, named entity recognition (NER), as a method to extract useful information from text data, has not been fully utilized in the field of Chinese hazardous-chemical handling. The challenge is that Chinese NER is more difficult than English NER, because the boundaries of Chinese are fuzzy. In addition, the descriptions of hazardous chemical accidents are colloquial and lacks relevant labeling data. Further, most current models do not consider identifying the entities related to accident scenarios, losses, and causes. To tackle these issues, we propose a model based on a rule template and Bert-BiLSTM-CRF (RT-BBC) to recognize named entities from unstructured Chinese hazardous chemical accident reports. Comprehensive experiments on real-world datasets show the effectiveness of the proposed method. Specifically, RT-BBC outperformed the most competitive method by 6.6% and 3.6% in terms of accuracy and F1.


Language: en

Keywords

hazardous chemicals; named entity recognition; pre-trained model; rule templates

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print