SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Li F, Zhang C, He X, Duan B, Wang C, Yan Z. Fire (Basel) 2023; 6(1): e7.

Copyright

(Copyright © 2023, MDPI: Multidisciplinary Digital Publications Institute)

DOI

10.3390/fire6010007

PMID

unavailable

Abstract

The coal-seam fire is one of the most significant disasters in the coal mining industry in China, affecting the safety of coal production in China. The working-position risk in coal mining has an important impact on the risk of fire occurrence, and thus it would be worthwhile to analyze working-position risks so as to effectively prevent and control coal-seam fires. Based on the kernel density estimation (KDE), this research puts forward an innovative calculation-model and assessment method of the superposition risk of the working position on coal-seam fire accidents. This research aims to evaluate the priority of risk management of working positions in coal-seam fire accidents. In order to achieve this research aim and objectives, this research carried out a statistical analysis of 100 classic cases of coal-seam fire accidents from 2000 to 2022, using the accident-tree-structure importance analysis method. This research contributed to the evaluation of the frequency and severity of various risk factors leading to fire accidents, and the development of the value at risk (VaR) of various risk factors in the coal-seam fire accidents. Integrating all the risk factors involved in each position and their risk values, and building a position-risk calculation model was carried out. In addition, in accordance with the kernel density estimation (KDE), a post-superposition risk model was established. Moreover, ArcGIS software was used to obtain the superimposed risk of posts and build a risk-distribution map. Based on the possibility of post-risk occurrence and the severity of the consequences, a risk-assessment matrix was developed, a post-risk grading standard was established, and risk levels of the working position were divided up in this research.

RESULTS indicated that (1) before risk superposition, working-position risks and risk levels are densely distributed, and nearly 80% of risk levels of the working position are focused on Level II and III, without Level I. (2) After risk superposition, the post-risk is affected by the surrounding post-risk, and the risk- and level-distribution is more hierarchical; the number of Level I risks in working positions increased to 12, which were mainly distributed among the comprehensive mining team, comprehensive excavation team and ventilation team, which accords more with the objective and actual production-conditions. The risk-distribution map directly showed that the post-fire risk at the mining face and shaft is higher, a result which will take on a significant guiding role in the effective control and prevention of risk in coal-seam fires in the future.


Language: en

Keywords

coal-seam fire; nuclear density; risk classification; risk superposition; working-position risks

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print