SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Yun J, Lee J, Park J, Chung K, Lee J. Transp. Res. Rec. 2022; 2676(12): 382-395.

Copyright

(Copyright © 2022, Transportation Research Board, National Research Council, National Academy of Sciences USA, Publisher SAGE Publishing)

DOI

10.1177/03611981221095516

PMID

unavailable

Abstract

This paper proposes a framework to evaluate the network vulnerability of cities to wildfires. Three cities are selected from the California Public Utilities Commission (CPUC), U.S., fire-threat regions: Orinda, Paradise, and Atascadero. For each city, four different network connectivity measures are calculated, and agent-based evacuation simulations are performed by the Monte Carlo method. In the simulations, the number of isolated vehicles and evacuation time estimates are measured for the following scenarios: (i) no wildfire case with original network; and (ii) wildfire cases with randomly damaged networks that are reduced by 1%, 3%, 5%, 7%, and 10% from the original network. A city-to-city comparison is conducted in relation to network connectivity measures and evacuation simulation results. It is shown that Paradise has the worst network connectivity, and the simulation results reveal that Paradise also has the most sensitive network in relation to random roadway closures caused by wildfire propagation. Thus, among the three cities, Paradise has the most vulnerable network to wildfires as determined through the two analysis results concerning the worst network measures and the simulation results. It is expected that the proposed analysis framework can be generally applied to any city located in a fire-threat region.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print