SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Xu W, Feng L, Ma J. PLoS One 2022; 17(12): e0278822.

Copyright

(Copyright © 2022, Public Library of Science)

DOI

10.1371/journal.pone.0278822

PMID

36490240

Abstract

This paper aims to provide insight into the driving distraction domain systematically on the basis of scientific knowledge graphs. For this purpose, 3,790 documents were taken into consideration after retrieving from Web of Science Core Collection and screening, and two types of knowledge graphs were constructed to demonstrate bibliometric information and domain-specific research content respectively. In terms of bibliometric analysis, the evolution of publication and citation numbers reveals the accelerated development of this domain, and trends of multidisciplinary and global participation could be identified according to knowledge graphs from Vosviewer. In terms of research content analysis, a new framework consisting of five dimensions was clarified, including "objective factors", "human factors", "research methods", "data" and "data science". The main entities of this domain were identified and relations between entities were extracted using Natural Language Processing methods with Python 3.9. In addition to the knowledge graph composed of all the keywords and relationships, entities and relations under each dimension were visualized, and relations between relevant dimensions were demonstrated in the form of heat maps. Furthermore, the trend and significance of driving distraction research were discussed, and special attention was given to future directions of this domain.


Language: en

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print