SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Cole VT, Hussong AM, Gottfredson NC, Bauer DJ, Curran PJ. Prev. Sci. 2022; ePub(ePub): ePub.

Copyright

(Copyright © 2022, Holtzbrinck Springer Nature Publishing Group)

DOI

10.1007/s11121-022-01466-1

PMID

36441362

Abstract

Combining datasets in an integrative data analysis (IDA) requires researchers to make a number of decisions about how best to harmonize item responses across datasets. This entails two sets of steps: logical harmonization, which involves combining items which appear similar across datasets, and analytic harmonization, which involves using psychometric models to find and account for cross-study differences in measurement. Embedded in logical and analytic harmonization are many decisions, from deciding whether items can be combined prima facie to how best to find covariate effects on specific items. Researchers may not have specific hypotheses about these decisions, and each individual choice may seem arbitrary, but the cumulative effects of these decisions are unknown. In the current study, we conducted an IDA of the relationship between alcohol use and delinquency using three datasets (total Nā€‰=ā€‰2245). For analytic harmonization, we used moderated nonlinear factor analysis (MNLFA) to generate factor scores for delinquency. We conducted both logical and analytic harmonization 72 times, each time making a different set of decisions. We assessed the cumulative influence of these decisions on MNLFA parameter estimates, factor scores, and estimates of the relationship between delinquency and alcohol use. There were differences across paths in MNLFA parameter estimates, but fewer differences in estimates of factor scores and regression parameters linking delinquency to alcohol use. These results suggest that factor scores may be relatively robust to subtly different decisions in data harmonization, and measurement model parameters are less so.


Language: en

Keywords

Data harmonization; Latent variable models; Multiverse analysis

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print