SAFETYLIT WEEKLY UPDATE

We compile citations and summaries of about 400 new articles every week.
RSS Feed

HELP: Tutorials | FAQ
CONTACT US: Contact info

Search Results

Journal Article

Citation

Hua C, Pan Y, Li J, Wang Z. Sensors (Basel) 2022; 22(22): e8779.

Copyright

(Copyright © 2022, MDPI: Multidisciplinary Digital Publishing Institute)

DOI

10.3390/s22228779

PMID

36433380

Abstract

Although gait recognition has been greatly improved by efforts from many researchers in recent years, its performance is still unsatisfactory due to the lack of gait information under the real scenariowhere only one or two images may be used for recognition. In this paper, a new gait recognition framework is brought about which can combine the long-short-term attention modules on silhouette images over the whole sequence and the real human physiological information calculated by a monocular image. The contributions of this work include the following: (1) Fusing the global long-term attention (GLTA) and local short-term attention (LSTA) over the whole query sequence to improve the gait recognition accuracy, where both the short-term gait feature (from two or three frames) and long-term feature (from the whole sequence) are extracted; (2) presenting a method to calculate the real personal static and dynamic physiological features through a single monocular image; (3) by efficiently applying the human physiological information, a new physiological feature extraction (PFE) network is proposed to concatenate the physiological information with silhouette for gait recognition. Through the experiments between the CASIA-B and Multi-state Gait datasets, the effectiveness and efficiency of the proposed method are proven. Under three different walking conditions of the CASIA-B dataset, the mean accuracy of rank-1 in our method is up to 89.6%, and in the Multi-state Gait dataset, wearing different clothes, the mean accuracy of rank-1 in our method is 2.4% higher than the other works.


Language: en

Keywords

feature extraction; feature fusion; deep learning; biometrics; gait recognition; image sequence

NEW SEARCH


All SafetyLit records are available for automatic download to Zotero & Mendeley
Print